Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-807569

RESUMO

Objective@#To establish a triple-color pseudovirion-based neutralization assay (PBNA) and evaluate its capability of detecting immunogenicity of the sera generated by the immunization of HPV 9-valent vaccine.@*Methods@#HPV pseudovirus (PsVs) 6/11/16/18/31/33/45/52/58 with the encapsidated fluorescence expressing red fluorescent plasmid N31-MCHREEY, green fluorescent N31-EGFP or blue fluorescent N31-mTagBFP were generated. The concentration of HPV PsVs and the infection titers of HPV PsVs were detected by double-antibody sandwich ELISA and TCID50, respectively. The single- and triple color HPV 16/33/45 PsVs were used to detect the neutralization titers of mice sera immunized with HPV 9-valent vaccine and confirmed the accuracy and specificity of the triple-color PBNAs. Then, the single- and triple color HPV 6/11/18/31/33/45/52/58 PsVs were employed to detect the neutralization titers of cynomolgus macaques sera immunized with HPV 9-valent vaccine and determined whether the triple-color PBNAs could be applied to evaluate the immunogenicity of the sera generated by the immunization of HPV9-valent vaccine.@*Results@#The concentration of HPV16 PsVs encapsulating green, red or blue fluorescent plasmid was 5.0 to 6.0 μg/ml and HPV6/11/18/31/33/45/52/59 triple-color HPV PsVs was about 1.0 to 3.0 μg/ml. 9 types HPV PsVs containing EGFP, Mcherry or mTagBFP reporter plasmid were obtained and the concentration can meet the need of neutralization detection. 9 types single-color fluorescent HPV PsVs had similar infectivity against 293FT cells with the infection titer values between 1×104 and 1×105. The results of PBNAs showed that there was no significant difference in the anti-HPV neutralization titers of mice sera induced by HPV 9-valent vaccine between single-color and triple-color HPV16/33/45 PsVs (P>0.05). Similarly, there was also no significant difference in the anti-HPV neutralization titers of cynomolgus macaques sera induced by HPV 9-valent vaccine between single-color and triple-color HPV6/11/18/31/33/45/52/58 PsVs (P>0.05).@*Conclusion@#We successfully established the triple-color PBNAs and verified the accuracy and specificity of triple-color PBNAs consistent with single-color PBNAs. The triple-color PBNAs can be applied to evaluate the immunogenicity of HPV 9-valent vaccine's immune serum.

2.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-486438

RESUMO

Objective To quantitatively analyze the characteristics of a panel of murine anti-human papillomavirus(HPV)11 L1-derived virus-like particle( VLP ) monoclonal antibodies ( mAbs ) and establish the mAb-based methods for antigen quality analysis.Methods A panel of 22 murine anti-HPV11 mAbs were characterized in details with their isotype, and binding affinity, conformational sensitivity were examined quantitatively in the direct binding ELISA and Western blot.The hemagglutination inhibition activity of mAbs were identified using the hemagglutination inhibition assay and the pseudovirus ( PsV ) neutralization efficiency were examined quantitatively using the PsV-based neutralization assay.The type-specific, highly conformational sensitive and neutralizing mAbs were selected to be used in the sandwich ELISA assay.Results Based on the quantitative and semi-quantitative results, six type-specific, highly conformational sensitive and neutralizing mAbs (2A2, 4A1-3, 16G7, 14A6, 9C1 and 19C7) were identified.These mAbs, along with 10D6 were screened as the capture mAb or as the detection mAb in the sandwich ELISA.Conclusion The binding affinity, conformational sensitivity and neutralization efficiency of anti-HPV11 mAbs were characterized in details.A mAb-based sandwich ELISA assay (14A6:Ag:9C12-HRP) were developed, which could be used in the in vitro potency analysis of HPV11 VLP-based vaccine.

3.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-485070

RESUMO

Objective To establish a mouse model of genital human papillomavirus (HPV) pseudovirion (PsV) transmission and evaluate the protective potency of HPV16 VLP vaccine.Methods HPV16 PsV with the encapsidated luciferase expressing plasmid Luc were generated from 293FT cells and purified by size-exclusion chromatography.The endpoint titers of HPV16 PsV-Luc were determined on 293FT cells, denoted as TRLU/mL.For in vivo genital challenge, mice were synchronized in a diestrus-like status by a subcutaneous injection with 0.1 μg β-estradiol and then with 3mg DepoProvera after 24 hours.Six hours prior to HPV16 PsV-Luc challenge, deeply anesthetized mice were intravaginally pretreated with 50 μL of 4%nonoxynol-9 ( N-9 ).HPV16 PsV-Luc was thoroughly mixed with 20 μL solution containing 4%carboxymethylcellulose ( CMC ) and intravaginally instilled using a positive-displacement pipette.Forty-eight hours after PsV-Luc challenge, mice were anesthetized and D luciferin was intravaginally instilled.After 3 minites, bioluminescence was measured with a cryogenically cooled Xenogen IVIS camera system.Then,the murine genital challenge model was used to determine the potency that HPV16 VLP vaccine is efficient at preventing HPV infection.Results HPV16 PsV-Luc was generated and purified from 293FT cells.HPV16 PsV-Luc was verified to containe L1 and L2 protein by Western blot.HPV 16 PsV-Luc successfully infected vaginal epithelial cells of mouse and the murine genital challenge model was established.To achieve consistent bioluminescence, the minimal dose of HPV16 PsV-Luc was 1.7 ×104 TRLU.The protective potency of HPV16 VLP vaccine was shown using this murine model.Our data showed that immune serum with over neutralizing antibody titer of 256-fold was sufficient to confer protection against HPV PsV genital infection .Conclusion The murine genital challenge model of HPV16 was successfully established, and the model is used to evaluate the potency of HPV16 VLP vaccine against in vivo genital HPV16 PsV challenge.Our model will benefit for the investigation of HPV neutralization and the potency evaluation of the HPV vaccine .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...